异步处理:如何处理异步IO?

你好,我是陈天。

前面两讲我们学习了异步处理基本的功能和原理(Future/async/await),但是还没有正式介绍在具体场合下该用哪些工具来处理异步 IO。不过之前讲 trait 的时候,已经了解和使用过一些处理同步 IO 的结构和 trait。

今天我们就对比同步 IO 来学习异步 IO。毕竟在学习某个新知识的时候,如果能够和头脑中已有的知识联系起来,大脑神经元之间的连接就会被激活,学习的效果会事半功倍。

回忆一下同步环境都有哪些结构和 trait呢?首先,单个的值可以用类型 T 表述,一组值可以用 Iterator trait 表述;同步 IO,我们有标准的 Read/Write/Seek trait。顾名思义,Read/Write 是进行 IO 的读写,而 Seek 是在 IO 中前后移动当前的位置。

那么异步呢?我们已经学习到,对于单个的、在未来某个时刻会得到的值,可以用 Future 来表示:

图片

但还不知道一组未来才能得到的值该用什么 trait 来表述,也不知道异步的 Read/Write 该是什么样子。今天,我们就来聊聊这些重要的异步数据类型。

Stream trait

首先来了解一下 Iterator 在异步环境下的表兄弟:Stream。

我们知道,对于 Iterator,可以不断调用其 next() 方法,获得新的值,直到 Iterator 返回 None。Iterator 是阻塞式返回数据的,每次调用 next(),必然独占 CPU 直到得到一个结果, 而异步的 Stream 是非阻塞的,在等待的过程中会空出 CPU 做其他事情

不过和 Future 已经在标准库稳定下来不同,Stream trait 目前还只能在 nightly 版本使用。一般跟 Stream 打交道,我们会使用 futures 库。来对比 Iterator 和 Stream的源码定义:

#![allow(unused)]
fn main() {
pub trait Iterator {
    type Item;
    fn next(&mut self) -> Option<Self::Item>;

    fn size_hint(&self) -> (usize, Option<usize>) { ... }
    fn map<B, F>(self, f: F) -> Map<Self, F> where F: FnMut(Self::Item) -> B { ... }
    ... // 还有 67 个方法
}

pub trait Stream {
    type Item;
    fn poll_next(self: Pin<&mut Self>,  cx: &mut Context<'_>) -> Poll<Option<Self::Item>>;

    fn size_hint(&self) -> (usize, Option<usize>) { ... }
}

pub trait StreamExt: Stream {
    fn next(&mut self) -> Next<'_, Self> where Self: Unpin { ... }
    fn map<T, F>(self, f: F) -> Map<Self, F> where F: FnMut(Self::Item) -> T { ... }
    ... // 还有 41 个方法
}

}

可以看到,Iterator 把所有方法都放在 Iterator trait 里,而Stream 把需要开发者实现的基本方法和有缺省实现的衍生方法区别开,放在不同的 trait 里。比如 map。

实现 Stream 的时候,和 Iterator 类似,你需要提供 Item 类型,这是每次拿出一个值时,值的类型;此外,还有 poll_next() 方法,它长得和 Future 的 poll() 方法很像,和 Iterator 版本的 next() 的作用类似。

然而,poll_next() 调用起来不方便,我们需要自己处理 Poll 状态,所以,StreamExt 提供了 next() 方法,返回一个实现了 Future trait 的 Next 结构,这样,我们就可以直接通过 stream.next().await 来获取下一个值了。来看 next() 方法以及 Next 结构的实现( 源码):

#![allow(unused)]
fn main() {
pub trait StreamExt: Stream {
    fn next(&mut self) -> Next<'_, Self> where Self: Unpin {
        assert_future::<Option<Self::Item>, _>(Next::new(self))
    }
}

// next 返回了 Next 结构
pub struct Next<'a, St: ?Sized> {
    stream: &'a mut St,
}

// 如果 Stream Unpin 那么 Next 也是 Unpin
impl<St: ?Sized + Unpin> Unpin for Next<'_, St> {}

impl<'a, St: ?Sized + Stream + Unpin> Next<'a, St> {
    pub(super) fn new(stream: &'a mut St) -> Self {
        Self { stream }
    }
}

// Next 实现了 Future,每次 poll() 实际上就是从 stream 中 poll_next()
impl<St: ?Sized + Stream + Unpin> Future for Next<'_, St> {
    type Output = Option<St::Item>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        self.stream.poll_next_unpin(cx)
    }
}

}

看个小例子( 代码):

use futures::prelude::*;

#[tokio::main]
async fn main() {
    let mut st = stream::iter(1..10)
        .filter(|x| future::ready(x % 2 == 0))
        .map(|x| x * x);

    while let Some(x) = st.next().await {
        println!("Got item: {}", x);
    }
}

我们使用 stream::iter 生成了一个 Stream,并对其进行 filter / map 的操作。最后,遍历整个 stream,把获得的数据打印出来。从使用的感受来看,Stream 和 Iterator 也很相似,可以对比着来用。

生成 Stream

futures 库提供了一些基本的生成 Stream 的方法,除了上面用到的 iter 方法,还有:

  • empty():生成一个空的 Stream
  • once():生成一个只包含单个值的 Stream
  • pending():生成一个不包含任何值,只返回 Poll::Pending 的 Stream
  • repeat():生成一个一直返回相同值的 Stream
  • repeat_with():通过闭包函数无穷尽地返回数据的 Stream
  • poll_fn():通过一个返回 Poll<Option> 的闭包来产生 Stream
  • unfold():通过初始值和返回 Future 的闭包来产生 Stream

前几种产生 Stream 的方法都很好理解,最后三种引入了闭包复杂一点,我们分别使用它们来实现斐波那契数列,对比一下差异( 代码):

use futures::{prelude::*, stream::poll_fn};
use std::task::Poll;

#[tokio::main]
async fn main() {
    consume(fib().take(10)).await;
    consume(fib1(10)).await;
    // unfold 产生的 Unfold stream 没有实现 Unpin,
    // 所以我们将其 Pin<Box<T>> 一下,使其满足 consume 的接口
    consume(fib2(10).boxed()).await;
}

async fn consume(mut st: impl Stream<Item = i32> + Unpin) {
    while let Some(v) = st.next().await {
        print!("{} ", v);
    }
    print!("\\n");
}

// 使用 repeat_with 创建 stream,无法控制何时结束
fn fib() -> impl Stream<Item = i32> {
    let mut a = 1;
    let mut b = 1;
    stream::repeat_with(move || {
        let c = a + b;
        a = b;
        b = c;
        b
    })
}

// 使用 poll_fn 创建 stream,可以通过返回 Poll::Ready(None) 来结束
fn fib1(mut n: usize) -> impl Stream<Item = i32> {
    let mut a = 1;
    let mut b = 1;
    poll_fn(move |_cx| -> Poll<Option<i32>> {
        if n == 0 {
            return Poll::Ready(None);
        }
        n -= 1;
        let c = a + b;
        a = b;
        b = c;
        Poll::Ready(Some(b))
    })
}

fn fib2(n: usize) -> impl Stream<Item = i32> {
    stream::unfold((n, (1, 1)), |(mut n, (a, b))| async move {
        if n == 0 {
            None
        } else {
            n -= 1;
            let c = a + b;
            // c 作为 poll_next() 的返回值,(n, (a, b)) 作为 state
            Some((c, (n, (b, c))))
        }
    })
}

值得注意的是, 使用 unfold 的时候,同时使用了局部变量和 Future,所以生成的 Stream 没有实现 Unpin,我们在使用的时候,需要将其 pin 住。怎么做呢?

Pin<Box> 是一种很简单的方法,能将数据 Pin 在堆上,我们可以使用 StreamExt 的 boxed() 方法来生成一个 Pin<Box>。

除了上面讲的方法,我们还可以为一个数据结构实现 Stream trait,从而使其支持 Stream。看一个例子( 代码):

use futures::prelude::*;
use pin_project::pin_project;
use std::{
    pin::Pin,
    task::{Context, Poll},
};
use tokio::{
    fs,
    io::{AsyncBufReadExt, AsyncRead, BufReader, Lines},
};

/// LineStream 内部使用 tokio::io::Lines
#[pin_project]
struct LineStream<R> {
    #[pin]
    lines: Lines<BufReader<R>>,
}

impl<R: AsyncRead> LineStream<R> {
    /// 从 BufReader 创建一个 LineStream
    pub fn new(reader: BufReader<R>) -> Self {
        Self {
            lines: reader.lines(),
        }
    }
}

/// 为 LineStream 实现 Stream trait
impl<R: AsyncRead> Stream for LineStream<R> {
    type Item = std::io::Result<String>;

    fn poll_next(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Option<Self::Item>> {
        self.project()
            .lines
            .poll_next_line(cx)
            .map(Result::transpose)
    }
}

#[tokio::main]
async fn main() -> std::io::Result<()> {
    let file = fs::File::open("Cargo.toml").await?;
    let reader = BufReader::new(file);
    let mut st = LineStream::new(reader);
    while let Some(Ok(line)) = st.next().await {
        println!("Got: {}", line);
    }

    Ok(())
}

这段代码封装了 Lines 结构,我们可以通过 AsyncBufReadExtlines() 方法,把一个实现了 AsyncBufRead trait 的 reader 转换成 Lines。

你也许注意到代码中引入的 pin_project 库,它提供了一些便利的宏,方便我们操作数据结构里需要被 pin 住的字段。在数据结构中, 可以使用 #[pin] 来声明某个字段在使用的时候需要被封装为 Pin。这样,调用时,我们就可以使用 self.project().lines 得到一个 Pin<&mut Lines>,以便调用其 poll_next_line() 方法(这个方法的第一个参数是 Pin<&mut Self>)。

在Lines这个结构内部,异步的 next_line() 方法可以读取下一行,它实际上就是比较低阶的 poll_next_line() 接口的一个封装。

虽然 Lines 结构提供了 next_line(),但并没有实现 Stream,所以我们无法像其他 Stream 那样统一用 next() 方法获取下一行。于是,我们将其包裹在自己的 LineStream 下,并且为 LineStream 实现了 Stream 方法。

注意,由于 poll_next_line() 的结果是 Result<Option>,而 Stream 的 poll_next() 的结果是 Option<Result>,所以我们需要使用 Result 方法的 transpose 来将二者对调。这个transpose 方法是一个很基础的方法,非常实用。

异步 IO 接口

在实现 LineStream 时,我们遇到了两个异步 I/O 接口:AsyncRead 以及 AsyncBufRead。回到开头的那张表,相信你现在已经有大致答案了吧: 所有同步的 Read / Write / Seek trait,前面加一个 Async,就构成了对应的异步 IO 接口

不过,和 Stream 不同的是,如果你对比 futures 下定义的 IO trait 以及 tokio 下定义的 IO trait,会发现它们都有各自的定义,双方并未统一,有些许的差别:

图片

比如 futures 下 AsyncRead 的定义:

#![allow(unused)]
fn main() {
pub trait AsyncRead {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut [u8]
    ) -> Poll<Result<usize, Error>>;

    unsafe fn initializer(&self) -> Initializer { ... }
    fn poll_read_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &mut [IoSliceMut<'_>]
    ) -> Poll<Result<usize, Error>> { ... }
}

}

而 tokio 下 AsyncRead 的定义:

#![allow(unused)]
fn main() {
pub trait AsyncRead {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut ReadBuf<'_>
    ) -> Poll<Result<()>>;
}

}

我们看不同之处:tokio 的 poll_read() 方法需要 ReadBuf,而 futures 的 poll_read() 方法需要 &mut [u8]。此外,futures 的 AsyncRead 还多了两个缺省方法。

再看 AsyncWrite。futures 下的 AsyncWrite 接口如下:

#![allow(unused)]
fn main() {
pub trait AsyncWrite {
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8]
    ) -> Poll<Result<usize, Error>>;
    fn poll_flush(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>
    ) -> Poll<Result<(), Error>>;
    fn poll_close(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>
    ) -> Poll<Result<(), Error>>;

    fn poll_write_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &[IoSlice<'_>]
    ) -> Poll<Result<usize, Error>> { ... }
}

}

而 tokio 下的 AsyncWrite 的定义:

#![allow(unused)]
fn main() {
pub trait AsyncWrite {
    fn poll_write(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &[u8]
    ) -> Poll<Result<usize, Error>>;
    fn poll_flush(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>
    ) -> Poll<Result<(), Error>>;
    fn poll_shutdown(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>
    ) -> Poll<Result<(), Error>>;

    fn poll_write_vectored(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        bufs: &[IoSlice<'_>]
    ) -> Poll<Result<usize, Error>> { ... }
    fn is_write_vectored(&self) -> bool { ... }
}

}

可以看到,AsyncWrite 二者的差距就只有 poll_close() 和 poll_shutdown() 命名上的分别。其它的异步 IO 接口我就不一一举例了,你可以自己去看代码对比。

异步 IO 接口的兼容性处理

为什么 Rust 的异步 IO trait 会有这样的分裂?这是因为在 tokio / futures 库实现的早期,社区还没有形成比较统一的异步 IO trait,不同的接口背后也有各自不同的考虑,这种分裂就沿袭下来。

所以,如果我们使用 tokio 进行异步开发,那么,代码需要使用 tokio::io 下的异步 IO trait。也许,未来等 Async IO trait 稳定并进入标准库后,tokio 会更新自己的 trait。

虽然 Rust 的异步 IO trait 有这样的分裂,你也不必过分担心。 tokio-util 提供了相应的 Compat 功能,可以让你的数据结构在二者之间自如切换。看一个使用 yamux 做多路复用的例子,重点位置详细注释了:

use anyhow::Result;
use futures::prelude::*;
use tokio::net::TcpListener;
use tokio_util::{
    codec::{Framed, LinesCodec},
    compat::{FuturesAsyncReadCompatExt, TokioAsyncReadCompatExt},
};
use tracing::info;
use yamux::{Config, Connection, Mode, WindowUpdateMode};

#[tokio::main]
async fn main() -> Result<()> {
    tracing_subscriber::fmt::init();
    let addr = "0.0.0.0:8080";
    let listener = TcpListener::bind(addr).await?;
    info!("Listening on: {:?}", addr);
    loop {
        let (stream, addr) = listener.accept().await?;
        info!("Accepted: {:?}", addr);
        let mut config = Config::default();
        config.set_window_update_mode(WindowUpdateMode::OnRead);
        // 使用 compat() 方法把 tokio AsyncRead/AsyncWrite 转换成 futures 对应的 trait
        let conn = Connection::new(stream.compat(), config, Mode::Server);
        // Yamux ctrl stream 可以用来打开新的 stream
        let _ctrl = conn.control();
        tokio::spawn(
            yamux::into_stream(conn).try_for_each_concurrent(None, move |s| async move {
                // 使用 compat() 方法把 futures AsyncRead/AsyncWrite 转换成 tokio 对应的 trait
                let mut framed = Framed::new(s.compat(), LinesCodec::new());
                while let Some(Ok(line)) = framed.next().await {
                    println!("Got: {}", line);
                    framed
                        .send(format!("Hello! I got '{}'", line))
                        .await
                        .unwrap();
                }

                Ok(())
            }),
        );
    }
}

yamux 是一个类似 HTTP/2 内部多路复用机制的协议,可以让你在一个 TCP 连接上打开多个逻辑 yamux stream,而yamux stream 之间并行工作,互不干扰。

yamux crate 在实现的时候,使用了 futures 下的异步 IO 接口。但是当我们使用 tokio Listener 接受一个客户端,得到对应的 TcpStream 时,这个 TcpStream 使用的是 tokio 下的异步 IO 接口。所以我们需要 tokio_util::compat 来协助接口的兼容。

在代码中,首先我用 stream.compat() 生成一个 Compat 结构,供 yamux Connection 使用:

#![allow(unused)]
fn main() {
let conn = Connection::new(stream.compat(), config, Mode::Server);

}

之后,拿到 yamux connection 下所有 stream 进行处理时,我们想用 tokio 的 Frame 和 Codec 一行行读取和写入,也就需要把使用 futures 异步接口的 yamux stream,转换成使用 tokio 接口的数据结构,这样就可以用在 Framed::new() 中:

#![allow(unused)]
fn main() {
let mut framed = Framed::new(s.compat(), LinesCodec::new());

}

如果你想运行这段代码,可以看这门课的 GitHub repo 下的完整版,包括依赖以及客户端的代码。

实现异步 IO 接口

异步 IO 主要应用在文件处理、网络处理等场合,而这些场合的数据结构都已经实现了对应的接口,比如 File 或者 TcpStream,它们也已经实现了 AsyncRead / AsyncWrite。所以基本上,我们不用自己实现异步 IO 接口,只需要会用就可以了。

不过有些情况,我们可能会把已有的数据结构封装在自己的数据结构中,此时,也应该实现相应的异步 IO 接口( 代码):

use anyhow::Result;
use pin_project::pin_project;
use std::{
    pin::Pin,
    task::{Context, Poll},
};
use tokio::{
    fs::File,
    io::{AsyncRead, AsyncReadExt, ReadBuf},
};

#[pin_project]
struct FileWrapper {
    #[pin]
    file: File,
}

impl FileWrapper {
    pub async fn try_new(name: &str) -> Result<Self> {
        let file = File::open(name).await?;
        Ok(Self { file })
    }
}

impl AsyncRead for FileWrapper {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut ReadBuf<'_>,
    ) -> Poll<std::io::Result<()>> {
        self.project().file.poll_read(cx, buf)
    }
}

#[tokio::main]
async fn main() -> Result<()> {
    let mut file = FileWrapper::try_new("./Cargo.toml").await?;
    let mut buffer = String::new();
    file.read_to_string(&mut buffer).await?;
    println!("{}", buffer);
    Ok(())
}

这段代码封装了 tokio::fs::File 结构,我们想读取内部的 file 字段,但又不想把 File 暴露出来,因此实现了 AsyncRead trait。

Sink trait

在同步环境下往 IO 中发送连续的数据,可以一次性发送,也可以使用 Write trait 多次发送,使用起来并没有什么麻烦;但在异步 IO 下,做同样的事情,我们需要更方便的接口。因此异步IO还有一个比较独特的 Sink trait,它是一个用于发送一系列异步值的接口。

看 Sink trait 的定义:

#![allow(unused)]
fn main() {
pub trait Sink<Item> {
    type Error;
    fn poll_ready(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>
    ) -> Poll<Result<(), Self::Error>>;
    fn start_send(self: Pin<&mut Self>, item: Item) -> Result<(), Self::Error>;
    fn poll_flush(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>
    ) -> Poll<Result<(), Self::Error>>;
    fn poll_close(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>
    ) -> Poll<Result<(), Self::Error>>;
}

pub trait SinkExt<Item>: Sink<Item> {
    ...
    fn send(&mut self, item: Item) -> Send<'_, Self, Item> where Self: Unpin { ... }
    ...
}

}

和 Stream trait 不同的是,Sink trait 的 Item 是 trait 的泛型参数,而不是关联类型。 一般而言,当 trait 接受某个 input,应该使用泛型参数,比如 Add;当它输出某个 output,那么应该使用关联类型,比如 Future、Stream、Iterator 等

Item 对于 Sink 来说是输入,所以使用泛型参数是正确的选择。因为这也意味着,在发送端,可以发送不同类型的数据结构。

看上面的定义源码,Sink trait 有四个方法:

  • poll_ready():用来准备 Sink 使其可以发送数据。只有 poll_ready() 返回 Poll::Ready(Ok(())) 后,Sink 才会开展后续的动作。poll_ready() 可以用来控制背压。
  • start_send():开始发送数据到 Sink。但是start_send() 并不保证数据被发送完毕,所以调用者要调用 poll_flush() 或者 poll_close() 来保证完整发送。
  • poll_flush():将任何尚未发送的数据 flush 到这个 Sink。
  • poll_close():将任何尚未发送的数据 flush 到这个 Sink,并关闭这个 Sink。

其中三个方法和 Item 是无关的,这会导致,如果不同的输入类型有多个实现,Sink的poll_ready、poll_flush 和 poll_close 可能会有重复的代码。所以一般我们在使用 Sink 时,如果确实需要处理不同的数据类型,可以用 enum 将它们统一(感兴趣的话,可以进一步阅读这个 讨论)。

我们就用一个简单的 FileSink 的例子,看看如何实现这些方法。tokio::fs 下的 File 结构已经实现了 AsyncRead / AsyncWrite,我们只需要在 Sink 的几个方法中调用 AsyncWrite 的方法即可( 代码):

use anyhow::Result;
use bytes::{BufMut, BytesMut};
use futures::{Sink, SinkExt};
use pin_project::pin_project;
use std::{
    pin::Pin,
    task::{Context, Poll},
};
use tokio::{fs::File, io::AsyncWrite};

#[pin_project]
struct FileSink {
    #[pin]
    file: File,
    buf: BytesMut,
}

impl FileSink {
    pub fn new(file: File) -> Self {
        Self {
            file,
            buf: BytesMut::new(),
        }
    }
}

impl Sink<&str> for FileSink {
    type Error = std::io::Error;

    fn poll_ready(self: Pin<&mut Self>, _cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        Poll::Ready(Ok(()))
    }

    fn start_send(self: Pin<&mut Self>, item: &str) -> Result<(), Self::Error> {
        let this = self.project();
        eprint!("{}", item);
        this.buf.put(item.as_bytes());
        Ok(())
    }

    fn poll_flush(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        // 如果想 project() 多次,需要先把 self reborrow 一下
        let this = self.as_mut().project();
        let buf = this.buf.split_to(this.buf.len());
        if buf.is_empty() {
            return Poll::Ready(Ok(()));
        }

        // 写入文件
        if let Err(e) = futures::ready!(this.file.poll_write(cx, &buf[..])) {
            return Poll::Ready(Err(e));
        }
        // 刷新文件
        self.project().file.poll_flush(cx)
    }

    fn poll_close(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Result<(), Self::Error>> {
        let this = self.project();
        // 结束写入
        this.file.poll_shutdown(cx)
    }
}

#[tokio::main]
async fn main() -> Result<()> {
    let file_sink = FileSink::new(File::create("/tmp/hello").await?);
    // pin_mut 可以把变量 pin 住
    futures::pin_mut!(file_sink);
    file_sink.send("hello\\n").await?;
    file_sink.send("world!\\n").await?;
    file_sink.send("Tyr!\\n").await?;

    Ok(())
}

对于 poll_ready() 方法,直接返回 Poll::Ready(Ok(()))。

在 start_send() 方法中,我们把传入的 item,写入 FileSink 的 BytesMut 中。然后在 poll_flush() 时,我们拿到 buf,把已有的内容调用 split_to(),得到一个包含所有未写入文件的新 buffer。这个 buffer 和 self 无关,所以传入 poll_write() 时,不会有对 self 的引用问题。

在写入文件后,我们再次调用 poll_flush() ,确保写入的内容刷新到磁盘上。最后,在 poll_close() 时调用 poll_shutdown() 关闭文件。

这段代码虽然实现了 Sink trait,也展示了如何实现 Sink 的几个方法,但是这么简单的一个问题,处理起来还是颇为费劲。有没有更简单的方法呢?

有的。futures 里提供了 sink::unfold 方法,类似 stream::unfold,我们来重写上面的 File Sink 的例子( 代码):

use anyhow::Result;
use futures::prelude::*;
use tokio::{fs::File, io::AsyncWriteExt};

#[tokio::main]
async fn main() -> Result<()> {
    let file_sink = writer(File::create("/tmp/hello").await?);
    // pin_mut 可以把变量 pin 住
    futures::pin_mut!(file_sink);
    if let Err(_) = file_sink.send("hello\\n").await {
        println!("Error on send");
    }
    if let Err(_) = file_sink.send("world!\\n").await {
        println!("Error on send");
    }
    Ok(())
}

/// 使用 unfold 生成一个 Sink 数据结构
fn writer<'a>(file: File) -> impl Sink<&'a str> {
    sink::unfold(file, |mut file, line: &'a str| async move {
        file.write_all(line.as_bytes()).await?;
        eprint!("Received: {}", line);
        Ok::<_, std::io::Error>(file)
    })
}

可以看到,通过 unfold 方法,我们不需要撰写 Sink 的几个方法了,而且可以在一个返回 Future 的闭包中来提供处理逻辑,这就意味着我们可以不使用 poll_xxx 这样的方法,直接在闭包中使用这样的异步函数:

#![allow(unused)]
fn main() {
file.write_all(line.as_bytes()).await?

}

你看,短短 5 行代码,就实现了刚才五十多行代码要表达的逻辑。

小结

今天我们学习了和异步 IO 相关的 Stream / Sink trait,以及和异步读写相关的 AsyncRead / AsyncWrite 等 trait。在学习异步 IO 时,很多内容都可以和同步 IO 的处理对比着学,这样事半功倍。

图片

在处理异步 IO 时,底层的 poll_xxx() 函数很难写,因为它的约束很多。好在有 pin_project 这个项目,用宏帮我们解决了很多关于 Pin/Unpin 的问题。

一般情况下,我们不太需要直接实现 Stream / Sink / AsyncRead / AsyncWrite trait,如果的确需要,先看看有没有可以使用的辅助函数,比如通过 poll_fn / unfold 创建 Stream、通过 unfold 创建 Sink。

思考题

我们知道 tokio:sync::mpsc 下有支持异步的 MPSC channel,生产者可以通过 send() 发送消息,消费者可以通过 recv() 来接收消息。你能不能为其封装 Sink 和 Stream 的实现,让 MPSC channel 可以像 Stream / Sink 一样使用?(提示:tokio-stream 有 ReceiverStream 的实现)。

欢迎在留言区分享你的思考和学习收获,感谢收听,恭喜你已经完成了rust学习的40次打卡,如果觉得有收获,也欢迎分享给你身边的朋友,邀他一起讨论。我们下节课见。