阶段实操(4):构建一个简单的KV server-网络处理

你好,我是陈天。

经历了基础篇和进阶篇中两讲的构建和优化,到现在,我们的KV server 核心功能已经比较完善了。不知道你有没有注意,之前一直在使用一个神秘的 async-prost 库,我们神奇地完成了TCP frame 的封包和解包。是怎么完成的呢?

async-prost 是我仿照 Jonhoo 的 async-bincode 做的一个处理 protobuf frame 的库,它可以和各种网络协议适配,包括 TCP / WebSocket / HTTP2 等。由于考虑通用性,它的抽象级别比较高,用了大量的泛型参数,主流程如下图所示:

主要的思路就是在序列化数据的时候,添加一个头部来提供 frame 的长度,反序列化的时候,先读出头部,获得长度,再读取相应的数据。感兴趣的同学可以去看代码,这里就不展开了。

今天我们的挑战就是,在上一次完成的 KV server 的基础上,来试着不依赖 async-prost,自己处理封包和解包的逻辑。如果你掌握了这个能力,配合 protobuf,就可以设计出任何可以承载实际业务的协议了。

如何定义协议的 Frame?

protobuf 帮我们解决了协议消息如何定义的问题,然而一个消息和另一个消息之间如何区分,是个伤脑筋的事情。我们需要定义合适的分隔符。

分隔符 + 消息数据,就是一个 Frame。之前在28网络开发 那一讲 简单说过如何界定一个frame。

很多基于 TCP 的协议会使用 \r\n 做分隔符,比如 FTP;也有使用消息长度做分隔符的,比如 gRPC;还有混用两者的,比如 Redis 的 RESP;更复杂的如 HTTP,header 之间使用 \r\n 分隔,header / body 之间使用 \r\n\r\n,header 中会提供 body 的长度等等。

“\r\n” 这样的分隔符,适合协议报文是 ASCII 数据;而通过长度进行分隔,适合协议报文是二进制数据。 我们的 KV Server 承载的 protobuf 是二进制,所以就在 payload 之前放一个长度,来作为 frame 的分隔

这个长度取什么大小呢?如果使用 2 个字节,那么 payload 最大是 64k;如果使用 4 个字节,payload 可以到 4G。一般的应用取 4 个字节就足够了。如果你想要更灵活些,也可以使用 varint

tokio 有个 tokio-util 库,已经帮我们处理了和 frame 相关的封包解包的主要需求,包括 LinesDelimited(处理 \r\n 分隔符)和 LengthDelimited(处理长度分隔符)。我们可以使用它的 LengthDelimitedCodec 尝试一下。

首先在 Cargo.toml 里添加依赖:

#![allow(unused)]
fn main() {
[dev-dependencies]
...
tokio-util = { version = "0.6", features = ["codec"]}
...

}

然后创建 examples/server_with_codec.rs 文件,添入如下代码:

use anyhow::Result;
use futures::prelude::*;
use kv2::{CommandRequest, MemTable, Service, ServiceInner};
use prost::Message;
use tokio::net::TcpListener;
use tokio_util::codec::{Framed, LengthDelimitedCodec};
use tracing::info;

#[tokio::main]
async fn main() -> Result<()> {
    tracing_subscriber::fmt::init();
    let service: Service = ServiceInner::new(MemTable::new()).into();
    let addr = "127.0.0.1:9527";
    let listener = TcpListener::bind(addr).await?;
    info!("Start listening on {}", addr);
    loop {
        let (stream, addr) = listener.accept().await?;
        info!("Client {:?} connected", addr);
        let svc = service.clone();
        tokio::spawn(async move {
            let mut stream = Framed::new(stream, LengthDelimitedCodec::new());
            while let Some(Ok(mut buf)) = stream.next().await {
                let cmd = CommandRequest::decode(&buf[..]).unwrap();
                info!("Got a new command: {:?}", cmd);
                let res = svc.execute(cmd);
                buf.clear();
                res.encode(&mut buf).unwrap();
                stream.send(buf.freeze()).await.unwrap();
            }
            info!("Client {:?} disconnected", addr);
        });
    }
}

你可以对比一下它和之前的 examples/server.rs 的差别,主要改动了这一行:

#![allow(unused)]
fn main() {
// let mut stream = AsyncProstStream::<_, CommandRequest, CommandResponse, _>::from(stream).for_async();
let mut stream = Framed::new(stream, LengthDelimitedCodec::new());

}

完成之后,我们打开一个命令行窗口,运行: RUST_LOG=info cargo run --example server_with_codec --quiet。然后在另一个命令行窗口,运行: RUST_LOG=info cargo run --example client --quiet。此时,服务器和客户端都收到了彼此的请求和响应,并且处理正常。

你这会是不是有点疑惑,为什么客户端没做任何修改也能和服务器通信?那是因为在目前的使用场景下,使用 AsyncProst 的客户端兼容 LengthDelimitedCodec。

如何撰写处理 Frame 的代码?

LengthDelimitedCodec 非常好用,它的代码也并不复杂,非常建议你有空研究一下。既然这一讲主要围绕网络开发展开,那么我们也来尝试一下撰写自己的对 Frame 处理的代码吧。

按照前面分析,我们在 protobuf payload 前加一个 4 字节的长度,这样,对端读取数据时,可以先读 4 字节,然后根据读到的长度,进一步读取满足这个长度的数据,之后就可以用相应的数据结构解包了。

为了更贴近实际, 我们把4字节长度的最高位拿出来作为是否压缩的信号,如果设置了,代表后续的 payload 是 gzip 压缩过的 protobuf,否则直接是 protobuf:

按照惯例,还是先来定义处理这个逻辑的 trait:

#![allow(unused)]
fn main() {
pub trait FrameCoder
where
    Self: Message + Sized + Default,
{
    /// 把一个 Message encode 成一个 frame
    fn encode_frame(&self, buf: &mut BytesMut) -> Result<(), KvError>;
    /// 把一个完整的 frame decode 成一个 Message
    fn decode_frame(buf: &mut BytesMut) -> Result<Self, KvError>;
}

}

定义了两个方法:

  • encode_frame() 可以把诸如 CommandRequest 这样的消息 封装 成一个 frame,写入传进来的 BytesMut;
  • decode_frame() 可以把收到的一个完整的、放在 BytesMut 中的数据, 解封装 成诸如 CommandRequest 这样的消息。

如果要实现这个 trait,Self 需要实现了 prost::Message,大小是固定的,并且实现了 Default(prost 的需求)。

好,我们再写实现代码。首先创建 src/network 目录,并在其下添加两个文件 mod.rsframe.rs。然后在 src/network/mod.rs 里引入 src/network/frame.rs:

#![allow(unused)]
fn main() {
mod frame;
pub use frame::FrameCoder;

}

同时在 lib.rs 里引入 network:

#![allow(unused)]
fn main() {
mod network;
pub use network::*;

}

因为要处理 gzip 压缩,还需要在 Cargo.toml 中引入 flate2,同时,因为今天这一讲引入了网络相关的操作和数据结构,我们需要把 tokio 从 dev-dependencies 移到 dependencies 里,为简单起见,就用 full features:

#![allow(unused)]
fn main() {
[dependencies]
...
flate2 = "1" # gzip 压缩
...
tokio = { version = "1", features = ["full"] } # 异步网络库
...

}

然后,在 src/network/frame.rs 里添加 trait 和实现 trait 的代码:

#![allow(unused)]
fn main() {
use std::io::{Read, Write};

use crate::{CommandRequest, CommandResponse, KvError};
use bytes::{Buf, BufMut, BytesMut};
use flate2::{read::GzDecoder, write::GzEncoder, Compression};
use prost::Message;
use tokio::io::{AsyncRead, AsyncReadExt};
use tracing::debug;

/// 长度整个占用 4 个字节
pub const LEN_LEN: usize = 4;
/// 长度占 31 bit,所以最大的 frame 是 2G
const MAX_FRAME: usize = 2 * 1024 * 1024 * 1024;
/// 如果 payload 超过了 1436 字节,就做压缩
const COMPRESSION_LIMIT: usize = 1436;
/// 代表压缩的 bit(整个长度 4 字节的最高位)
const COMPRESSION_BIT: usize = 1 << 31;

/// 处理 Frame 的 encode/decode
pub trait FrameCoder
where
    Self: Message + Sized + Default,
{
    /// 把一个 Message encode 成一个 frame
    fn encode_frame(&self, buf: &mut BytesMut) -> Result<(), KvError> {
        let size = self.encoded_len();

        if size >= MAX_FRAME {
            return Err(KvError::FrameError);
        }

        // 我们先写入长度,如果需要压缩,再重写压缩后的长度
        buf.put_u32(size as _);

        if size > COMPRESSION_LIMIT {
            let mut buf1 = Vec::with_capacity(size);
            self.encode(&mut buf1)?;

            // BytesMut 支持逻辑上的 split(之后还能 unsplit)
            // 所以我们先把长度这 4 字节拿走,清除
            let payload = buf.split_off(LEN_LEN);
            buf.clear();

            // 处理 gzip 压缩,具体可以参考 flate2 文档
            let mut encoder = GzEncoder::new(payload.writer(), Compression::default());
            encoder.write_all(&buf1[..])?;

            // 压缩完成后,从 gzip encoder 中把 BytesMut 再拿回来
            let payload = encoder.finish()?.into_inner();
            debug!("Encode a frame: size {}({})", size, payload.len());

            // 写入压缩后的长度
            buf.put_u32((payload.len() | COMPRESSION_BIT) as _);

            // 把 BytesMut 再合并回来
            buf.unsplit(payload);

            Ok(())
        } else {
            self.encode(buf)?;
            Ok(())
        }
    }

    /// 把一个完整的 frame decode 成一个 Message
    fn decode_frame(buf: &mut BytesMut) -> Result<Self, KvError> {
        // 先取 4 字节,从中拿出长度和 compression bit
        let header = buf.get_u32() as usize;
        let (len, compressed) = decode_header(header);
        debug!("Got a frame: msg len {}, compressed {}", len, compressed);

        if compressed {
            // 解压缩
            let mut decoder = GzDecoder::new(&buf[..len]);
            let mut buf1 = Vec::with_capacity(len * 2);
            decoder.read_to_end(&mut buf1)?;
            buf.advance(len);

            // decode 成相应的消息
            Ok(Self::decode(&buf1[..buf1.len()])?)
        } else {
            let msg = Self::decode(&buf[..len])?;
            buf.advance(len);
            Ok(msg)
        }
    }
}

impl FrameCoder for CommandRequest {}
impl FrameCoder for CommandResponse {}

fn decode_header(header: usize) -> (usize, bool) {
    let len = header & !COMPRESSION_BIT;
    let compressed = header & COMPRESSION_BIT == COMPRESSION_BIT;
    (len, compressed)
}

}

这段代码本身并不难理解。我们直接为 FrameCoder 提供了缺省实现,然后 CommandRequest / CommandResponse 做了空实现。其中使用了之前介绍过的 bytes 库里的 BytesMut,以及新引入的 GzEncoder / GzDecoder。你可以按照 20 讲 介绍的阅读源码的方式,了解这几个数据类型的用法。最后还写了个辅助函数 decode_header(),让 decode_frame() 的代码更直观一些。

如果你有些疑惑为什么 COMPRESSION_LIMIT 设成 1436?

这是因为以太网的 MTU 是 1500,除去 IP 头 20 字节、TCP 头 20 字节,还剩 1460;一般 TCP 包会包含一些 Option(比如 timestamp),IP 包也可能包含,所以我们预留 20 字节;再减去 4 字节的长度,就是 1436,不用分片的最大消息长度。如果大于这个,很可能会导致分片,我们就干脆压缩一下

现在,CommandRequest / CommandResponse 就可以做 frame 级别的处理了,我们写一些测试验证是否工作。还是在 src/network/frame.rs 里,添加测试代码:

#![allow(unused)]
fn main() {
#[cfg(test)]
mod tests {
    use super::*;
    use crate::Value;
    use bytes::Bytes;

    #[test]
    fn command_request_encode_decode_should_work() {
        let mut buf = BytesMut::new();

        let cmd = CommandRequest::new_hdel("t1", "k1");
        cmd.encode_frame(&mut buf).unwrap();

        // 最高位没设置
        assert_eq!(is_compressed(&buf), false);

        let cmd1 = CommandRequest::decode_frame(&mut buf).unwrap();
        assert_eq!(cmd, cmd1);
    }

    #[test]
    fn command_response_encode_decode_should_work() {
        let mut buf = BytesMut::new();

        let values: Vec<Value> = vec![1.into(), "hello".into(), b"data".into()];
        let res: CommandResponse = values.into();
        res.encode_frame(&mut buf).unwrap();

        // 最高位没设置
        assert_eq!(is_compressed(&buf), false);

        let res1 = CommandResponse::decode_frame(&mut buf).unwrap();
        assert_eq!(res, res1);
    }

    #[test]
    fn command_response_compressed_encode_decode_should_work() {
        let mut buf = BytesMut::new();

        let value: Value = Bytes::from(vec![0u8; COMPRESSION_LIMIT + 1]).into();
        let res: CommandResponse = value.into();
        res.encode_frame(&mut buf).unwrap();

        // 最高位设置了
        assert_eq!(is_compressed(&buf), true);

        let res1 = CommandResponse::decode_frame(&mut buf).unwrap();
        assert_eq!(res, res1);
    }

    fn is_compressed(data: &[u8]) -> bool {
        if let &[v] = &data[..1] {
            v >> 7 == 1
        } else {
            false
        }
    }
}

}

这个测试代码里面有从 [u8; N] 到 Value( b"data".into()) 以及从 Bytes 到 Value 的转换,所以我们需要在 src/pb/mod.rs 里添加 From trait 的相应实现:

#![allow(unused)]
fn main() {
impl<const N: usize> From<&[u8; N]> for Value {
    fn from(buf: &[u8; N]) -> Self {
        Bytes::copy_from_slice(&buf[..]).into()
    }
}

impl From<Bytes> for Value {
    fn from(buf: Bytes) -> Self {
        Self {
            value: Some(value::Value::Binary(buf)),
        }
    }
}

}

运行 cargo test ,所有测试都可以通过。

到这里,我们就完成了 Frame 的序列化(encode_frame)和反序列化(decode_frame),并且用测试确保它的正确性。 做网络开发的时候,要尽可能把实现逻辑和 IO 分离,这样有助于可测性以及应对未来 IO 层的变更。目前,这个代码没有触及任何和 socket IO 相关的内容,只是纯逻辑,接下来我们要将它和我们用于处理服务器客户端的 TcpStream 联系起来。

在进一步写网络相关的代码前,还有一个问题需要解决:decode_frame() 函数使用的 BytesMut,是如何从 socket 里拿出来的?显然,先读 4 个字节,取出长度 N,然后再读 N 个字节。这个细节和 frame 关系很大,所以还需要在 src/network/frame.rs 里写个辅助函数 read_frame():

#![allow(unused)]
fn main() {
/// 从 stream 中读取一个完整的 frame
pub async fn read_frame<S>(stream: &mut S, buf: &mut BytesMut) -> Result<(), KvError>
where
    S: AsyncRead + Unpin + Send,
{
    let header = stream.read_u32().await? as usize;
    let (len, _compressed) = decode_header(header);
		// 如果没有这么大的内存,就分配至少一个 frame 的内存,保证它可用
    buf.reserve(LEN_LEN + len);
    buf.put_u32(header as _);
    // advance_mut 是 unsafe 的原因是,从当前位置 pos 到 pos + len,
    // 这段内存目前没有初始化。我们就是为了 reserve 这段内存,然后从 stream
    // 里读取,读取完,它就是初始化的。所以,我们这么用是安全的
    unsafe { buf.advance_mut(len) };
    stream.read_exact(&mut buf[LEN_LEN..]).await?;
    Ok(())
}

}

在写 read_frame() 时,我们不希望它只能被用于 TcpStream,这样太不灵活, 所以用了泛型参数 S,要求传入的 S 必须满足 AsyncRead + Unpin + Send。我们来看看这3个约束。

AsyncRead 是 tokio 下的一个 trait,用于做异步读取,它有一个方法 poll_read():

#![allow(unused)]
fn main() {
pub trait AsyncRead {
    fn poll_read(
        self: Pin<&mut Self>,
        cx: &mut Context<'_>,
        buf: &mut ReadBuf<'_>
    ) -> Poll<Result<()>>;
}

}

一旦某个数据结构实现了 AsyncRead,它就可以使用 AsyncReadExt 提供的多达 29 个辅助方法。这是因为任何实现了 AsyncRead 的数据结构,都自动实现了 AsyncReadExt:

#![allow(unused)]
fn main() {
impl<R: AsyncRead + ?Sized> AsyncReadExt for R {}

}

我们虽然还没有正式学怎么做异步处理,但是之前已经看到了很多 async/await 的代码。

异步处理,目前你可以把它想象成一个内部有个状态机的数据结构,异步运行时根据需要不断地对其做 poll 操作,直到它返回 Poll::Ready,说明得到了处理结果;如果它返回 Poll::Pending,说明目前还无法继续,异步运行时会将其挂起,等下次某个事件将这个任务唤醒。

对于 Socket 来说,读取 socket 就是一个不断 poll_read() 的过程,直到读到了满足 ReadBuf 需要的内容。

至于 Send 约束,很好理解,S 需要能在不同线程间移动所有权。对于 Unpin 约束,未来讲 Future 的时候再具体说。现在你就权且记住,如果编译器抱怨一个泛型参数 “cannot be unpinned” ,一般来说,这个泛型参数需要加 Unpin 的约束。你可以试着把 Unpin 去掉,看看编译器的报错。

好,既然又写了一些代码,自然需为其撰写相应的测试。但是,要测 read_frame() 函数,需要一个支持 AsyncRead 的数据结构,虽然 TcpStream 支持它,但是我们不应该在单元测试中引入太过复杂的行为。 为了测试 read_frame() 而建立 TCP 连接,显然没有必要。怎么办

第 25 讲,我们聊过测试代码和产品代码同等的重要性,所以,在开发中,也要为测试代码创建合适的生态环境,让测试简洁、可读性强。那这里,我们就创建一个简单的数据结构,使其实现 AsyncRead,这样就可以“单元”测试 read_frame() 了。

在 src/network/frame.rs 里的 mod tests 下加入:

#![allow(unused)]
fn main() {
#[cfg(test)]
mod tests {
		struct DummyStream {
        buf: BytesMut,
    }

    impl AsyncRead for DummyStream {
        fn poll_read(
            self: std::pin::Pin<&mut Self>,
            _cx: &mut std::task::Context<'_>,
            buf: &mut tokio::io::ReadBuf<'_>,
        ) -> std::task::Poll<std::io::Result<()>> {
						// 看看 ReadBuf 需要多大的数据
            let len = buf.capacity();

            // split 出这么大的数据
            let data = self.get_mut().buf.split_to(len);

            // 拷贝给 ReadBuf
            buf.put_slice(&data);

            // 直接完工
            std::task::Poll::Ready(Ok(()))
        }
    }
}

}

因为只需要保证 AsyncRead 接口的正确性,所以不需要太复杂的逻辑,我们就放一个 buffer,poll_read() 需要读多大的数据,我们就给多大的数据。有了这个 DummyStream,就可以测试 read_frame() 了:

#![allow(unused)]
fn main() {
#[tokio::test]
async fn read_frame_should_work() {
    let mut buf = BytesMut::new();
    let cmd = CommandRequest::new_hdel("t1", "k1");
    cmd.encode_frame(&mut buf).unwrap();
    let mut stream = DummyStream { buf };

    let mut data = BytesMut::new();
    read_frame(&mut stream, &mut data).await.unwrap();

    let cmd1 = CommandRequest::decode_frame(&mut data).unwrap();
    assert_eq!(cmd, cmd1);
}

}

运行 “cargo test”,测试通过。如果你的代码无法编译,可以看看编译错误,是不是缺了一些 use 语句来把某些数据结构和 trait 引入。你也可以对照 GitHub 上的代码修改。

让网络层可以像 AsyncProst 那样方便使用

现在,我们的 frame 已经可以正常工作了。接下来要构思一下,服务端和客户端该如何封装。

对于服务器,我们期望可以对 accept 下来的 TcpStream 提供一个 process() 方法,处理协议的细节:

#[tokio::main]
async fn main() -> Result<()> {
    tracing_subscriber::fmt::init();
    let addr = "127.0.0.1:9527";
    let service: Service = ServiceInner::new(MemTable::new()).into();
    let listener = TcpListener::bind(addr).await?;
    info!("Start listening on {}", addr);
    loop {
        let (stream, addr) = listener.accept().await?;
        info!("Client {:?} connected", addr);
        let stream = ProstServerStream::new(stream, service.clone());
        tokio::spawn(async move { stream.process().await });
    }
}

这个 process() 方法,实际上就是对 examples/server.rs 中 tokio::spawn 里的 while loop 的封装:

#![allow(unused)]
fn main() {
while let Some(Ok(cmd)) = stream.next().await {
    info!("Got a new command: {:?}", cmd);
    let res = svc.execute(cmd);
    stream.send(res).await.unwrap();
}

}

对客户端,我们也希望可以直接 execute() 一个命令,就能得到结果:

#[tokio::main]
async fn main() -> Result<()> {
    tracing_subscriber::fmt::init();

    let addr = "127.0.0.1:9527";
    // 连接服务器
    let stream = TcpStream::connect(addr).await?;

    let mut client = ProstClientStream::new(stream);

    // 生成一个 HSET 命令
    let cmd = CommandRequest::new_hset("table1", "hello", "world".to_string().into());

    // 发送 HSET 命令
    let data = client.execute(cmd).await?;
    info!("Got response {:?}", data);

    Ok(())
}

这个 execute(),实际上就是对 examples/client.rs 中发送和接收代码的封装:

#![allow(unused)]
fn main() {
client.send(cmd).await?;
if let Some(Ok(data)) = client.next().await {
    info!("Got response {:?}", data);
}

}

这样的代码,看起来很简洁,维护起来也很方便。

好,先看服务器处理一个 TcpStream 的数据结构,它需要包含 TcpStream,还有我们之前创建的用于处理客户端命令的 Service。所以,让服务器处理 TcpStream 的结构包含这两部分:

#![allow(unused)]
fn main() {
pub struct ProstServerStream<S> {
    inner: S,
    service: Service,
}

}

而客户端处理 TcpStream 的结构就只需要包含 TcpStream:

#![allow(unused)]
fn main() {
pub struct ProstClientStream<S> {
    inner: S,
}

}

这里,依旧使用了泛型参数 S。未来,如果要支持 WebSocket,或者在 TCP 之上支持 TLS,它都可以让我们无需改变这一层的代码。

接下来就是具体的实现。有了 frame 的封装,服务器的 process() 方法和客户端的 execute() 方法都很容易实现。我们直接在 src/network/mod.rs 里添加完整代码:

#![allow(unused)]
fn main() {
mod frame;
use bytes::BytesMut;
pub use frame::{read_frame, FrameCoder};
use tokio::io::{AsyncRead, AsyncWrite, AsyncWriteExt};
use tracing::info;

use crate::{CommandRequest, CommandResponse, KvError, Service};

/// 处理服务器端的某个 accept 下来的 socket 的读写
pub struct ProstServerStream<S> {
    inner: S,
    service: Service,
}

/// 处理客户端 socket 的读写
pub struct ProstClientStream<S> {
    inner: S,
}

impl<S> ProstServerStream<S>
where
    S: AsyncRead + AsyncWrite + Unpin + Send,
{
    pub fn new(stream: S, service: Service) -> Self {
        Self {
            inner: stream,
            service,
        }
    }

    pub async fn process(mut self) -> Result<(), KvError> {
        while let Ok(cmd) = self.recv().await {
            info!("Got a new command: {:?}", cmd);
            let res = self.service.execute(cmd);
            self.send(res).await?;
        }
        // info!("Client {:?} disconnected", self.addr);
        Ok(())
    }

    async fn send(&mut self, msg: CommandResponse) -> Result<(), KvError> {
        let mut buf = BytesMut::new();
        msg.encode_frame(&mut buf)?;
        let encoded = buf.freeze();
        self.inner.write_all(&encoded[..]).await?;
        Ok(())
    }

    async fn recv(&mut self) -> Result<CommandRequest, KvError> {
        let mut buf = BytesMut::new();
        let stream = &mut self.inner;
        read_frame(stream, &mut buf).await?;
        CommandRequest::decode_frame(&mut buf)
    }
}

impl<S> ProstClientStream<S>
where
    S: AsyncRead + AsyncWrite + Unpin + Send,
{
    pub fn new(stream: S) -> Self {
        Self { inner: stream }
    }

    pub async fn execute(&mut self, cmd: CommandRequest) -> Result<CommandResponse, KvError> {
        self.send(cmd).await?;
        Ok(self.recv().await?)
    }

    async fn send(&mut self, msg: CommandRequest) -> Result<(), KvError> {
        let mut buf = BytesMut::new();
        msg.encode_frame(&mut buf)?;
        let encoded = buf.freeze();
        self.inner.write_all(&encoded[..]).await?;
        Ok(())
    }

    async fn recv(&mut self) -> Result<CommandResponse, KvError> {
        let mut buf = BytesMut::new();
        let stream = &mut self.inner;
        read_frame(stream, &mut buf).await?;
        CommandResponse::decode_frame(&mut buf)
    }
}

}

这段代码不难阅读,基本上和 frame 的测试代码大同小异。

当然了,我们还是需要写段代码来测试客户端和服务器交互的整个流程:

#![allow(unused)]
fn main() {
#[cfg(test)]
mod tests {
    use anyhow::Result;
    use bytes::Bytes;
    use std::net::SocketAddr;
    use tokio::net::{TcpListener, TcpStream};

    use crate::{assert_res_ok, MemTable, ServiceInner, Value};

    use super::*;

    #[tokio::test]
    async fn client_server_basic_communication_should_work() -> anyhow::Result<()> {
        let addr = start_server().await?;

        let stream = TcpStream::connect(addr).await?;
        let mut client = ProstClientStream::new(stream);

        // 发送 HSET,等待回应

        let cmd = CommandRequest::new_hset("t1", "k1", "v1".into());
        let res = client.execute(cmd).await.unwrap();

        // 第一次 HSET 服务器应该返回 None
        assert_res_ok(res, &[Value::default()], &[]);

        // 再发一个 HSET
        let cmd = CommandRequest::new_hget("t1", "k1");
        let res = client.execute(cmd).await?;

        // 服务器应该返回上一次的结果
        assert_res_ok(res, &["v1".into()], &[]);

        Ok(())
    }

    #[tokio::test]
    async fn client_server_compression_should_work() -> anyhow::Result<()> {
        let addr = start_server().await?;

        let stream = TcpStream::connect(addr).await?;
        let mut client = ProstClientStream::new(stream);

        let v: Value = Bytes::from(vec![0u8; 16384]).into();
        let cmd = CommandRequest::new_hset("t2", "k2", v.clone().into());
        let res = client.execute(cmd).await?;

        assert_res_ok(res, &[Value::default()], &[]);

        let cmd = CommandRequest::new_hget("t2", "k2");
        let res = client.execute(cmd).await?;

        assert_res_ok(res, &[v.into()], &[]);

        Ok(())
    }

    async fn start_server() -> Result<SocketAddr> {
        let listener = TcpListener::bind("127.0.0.1:0").await.unwrap();
        let addr = listener.local_addr().unwrap();

        tokio::spawn(async move {
            loop {
                let (stream, _) = listener.accept().await.unwrap();
                let service: Service = ServiceInner::new(MemTable::new()).into();
                let server = ProstServerStream::new(stream, service);
                tokio::spawn(server.process());
            }
        });

        Ok(addr)
    }
}

}

测试代码基本上是之前 examples 下的 server.rs/client.rs 中的内容。我们测试了不做压缩和做压缩的两种情况。运行 cargo test ,应该所有测试都通过了。

正式创建 kv-server 和 kv-client

我们之前写了很多代码,真正可运行的 server/client 都是 examples 下的代码。现在我们终于要正式创建 kv-server / kv-client 了。

首先在 Cargo.toml 中,加入两个可执行文件:kvs(kv-server)和 kvc(kv-client)。还需要把一些依赖移动到 dependencies 下。修改之后,Cargo.toml 长这个样子:

#![allow(unused)]
fn main() {
[package]
name = "kv2"
version = "0.1.0"
edition = "2018"

[[bin]]
name = "kvs"
path = "src/server.rs"

[[bin]]
name = "kvc"
path = "src/client.rs"

[dependencies]
anyhow = "1" # 错误处理
bytes = "1" # 高效处理网络 buffer 的库
dashmap = "4" # 并发 HashMap
flate2 = "1" # gzip 压缩
http = "0.2" # 我们使用 HTTP status code 所以引入这个类型库
prost = "0.8" # 处理 protobuf 的代码
sled = "0.34" # sled db
thiserror = "1" # 错误定义和处理
tokio = { version = "1", features = ["full" ] } # 异步网络库
tracing = "0.1" # 日志处理
tracing-subscriber = "0.2" # 日志处理

[dev-dependencies]
async-prost = "0.2.1" # 支持把 protobuf 封装成 TCP frame
futures = "0.3" # 提供 Stream trait
tempfile = "3" # 处理临时目录和临时文件
tokio-util = { version = "0.6", features = ["codec"]}

[build-dependencies]
prost-build = "0.8" # 编译 protobuf

}

然后,创建 src/client.rs 和 src/server.rs,分别写入下面的代码。src/client.rs:

use anyhow::Result;
use kv2::{CommandRequest, ProstClientStream};
use tokio::net::TcpStream;
use tracing::info;

#[tokio::main]
async fn main() -> Result<()> {
    tracing_subscriber::fmt::init();

    let addr = "127.0.0.1:9527";
    // 连接服务器
    let stream = TcpStream::connect(addr).await?;

    let mut client = ProstClientStream::new(stream);

    // 生成一个 HSET 命令
    let cmd = CommandRequest::new_hset("table1", "hello", "world".to_string().into());

    // 发送 HSET 命令
    let data = client.execute(cmd).await?;
    info!("Got response {:?}", data);

    Ok(())
}

src/server.rs:

use anyhow::Result;
use kv2::{MemTable, ProstServerStream, Service, ServiceInner};
use tokio::net::TcpListener;
use tracing::info;

#[tokio::main]
async fn main() -> Result<()> {
    tracing_subscriber::fmt::init();
    let addr = "127.0.0.1:9527";
    let service: Service = ServiceInner::new(MemTable::new()).into();
    let listener = TcpListener::bind(addr).await?;
    info!("Start listening on {}", addr);
    loop {
        let (stream, addr) = listener.accept().await?;
        info!("Client {:?} connected", addr);
        let stream = ProstServerStream::new(stream, service.clone());
        tokio::spawn(async move { stream.process().await });
    }
}

这和之前的 client / server 的代码几乎一致,不同的是,我们使用了自己撰写的 frame 处理方法。

完成之后,我们可以打开一个命令行窗口,运行: RUST_LOG=info cargo run --bin kvs --quiet。然后在另一个命令行窗口,运行: RUST_LOG=info cargo run --bin kvc --quiet。此时,服务器和客户端都收到了彼此的请求和响应,并且处理正常。现在,我们的 KV server 越来越像回事了!

小结

网络开发是 Rust 下一个很重要的应用场景。tokio 为我们提供了很棒的异步网络开发的支持。

在开发网络协议时,你要确定你的 frame 如何封装,一般来说,长度 + protobuf 足以应付绝大多数复杂的协议需求。这一讲我们虽然详细介绍了自己该如何处理用长度封装 frame 的方法,其实 tokio-util 提供了 LengthDelimitedCodec,可以完成今天关于 frame 部分的处理。如果你自己撰写网络程序,可以直接使用它。

在网络开发的时候,如何做单元测试是一大痛点,我们可以根据其实现的接口,围绕着接口来构建测试数据结构,比如 TcpStream 实现了 AsycnRead / AsyncWrite。考虑简洁和可读,为了测试read_frame() ,我们构建了 DummyStream 来协助测试。你也可以用类似的方式处理你所做项目的测试需求。

结构良好架构清晰的代码,一定是容易测试的代码,纵观整个项目,从 CommandService trait 和 Storage trait 的测试,一路到现在网络层的测试。如果使用 tarpaulin 来看测试覆盖率,你会发现,这个项目目前已经有 89%了,如果不算 src/server.rs 和 src/client.rs 的话,有接近 92% 的测试覆盖率。即便在生产环境的代码里,这也算是很高质量的测试覆盖率了。

INFO cargo_tarpaulin::report: Coverage Results:
|| Tested/Total Lines:
|| src/client.rs: 0/9 +0.00%
|| src/network/frame.rs: 80/82 +0.00%
|| src/network/mod.rs: 65/66 +4.66%
|| src/pb/mod.rs: 54/75 +0.00%
|| src/server.rs: 0/11 +0.00%
|| src/service/command_service.rs: 120/129 +0.00%
|| src/service/mod.rs: 79/84 +0.00%
|| src/storage/memory.rs: 34/37 +0.00%
|| src/storage/mod.rs: 58/58 +0.00%
|| src/storage/sleddb.rs: 40/43 +0.00%
||
89.23% coverage, 530/594 lines covered

思考题

  1. 在设计 frame 的时候,如果我们的压缩方法不止 gzip 一种,而是服务器或客户端都会根据各自的情况,在需要的时候做某种算法的压缩。假设服务器和客户端都支持 gzip、lz4 和 zstd 这三种压缩算法。那么 frame 该如何设计呢?需要用几个 bit 来存放压缩算法的信息?
  2. 目前我们的 client 只适合测试,你可以将其修改成一个完整的命令行程序么?小提示,可以使用 clap 或 structopt,用户可以输入不同的命令;或者做一个交互式的命令行,使用 shellfishrustyline,就像 redis-cli 那样。
  3. 试着使用 LengthDelimitedCodec 来重写 frame 这一层。

欢迎在留言区分享你的思考,感谢你的收听。你已经完成Rust学习的第36次打卡啦。

延伸阅读

tarpaulin 是 Rust 下做测试覆盖率的工具。因为使用了操作系统和 CPU 的特殊指令追踪代码的执行,所以它目前只支持 x86_64 / Linux。测试覆盖率一般在 CI 中使用,所以有 Linux 的支持也足够了。

一般来说,我们在生产环境中运行的代码,都要求至少有 80% 以上的测试覆盖率。为项目构建足够好的测试覆盖率并不容易,因为这首先意味着写出来的代码要容易测试。所以, 对于新的项目,最好一开始就在 CI 中为测试覆盖率设置一个门槛,这样可以倒逼着大家保证单元测试的数量。同时,单元测试又会倒逼代码要有良好的结构和良好的接口,否则不容易测试。

如果觉得有收获,也欢迎你分享给身边的朋友,邀他一起讨论。我们下节课见~